
Using SGI omplace for Pinning
Category: Process Pinning

Summary: The omplace wrapper script pins processes and threads for better
performance. It works with SGI MPT, Intel MPI, and hybrid MPI/OpenMP applications.

SGI's omplace is a wrapper script for dplace. It provides an easier syntax than dplace
for pinning processes and threads. omplace works with SGI MPT as well as with Intel MPI.
In addition to pinning pure MPI or pure OpenMP applications, omplace can also be used
for pinning hybrid MPI/OpenMP applications.

A few issues with omplace to keep in mind:

dplace and omplace do not work with Intel compiler versions 10.1.015 and
10.1.017. Use the Intel compiler version 11.1 or later, instead

•

To avoid interference between dplace/omplace and Intel's thread affinity
interface, set the environment variable KMP_AFFINITY to disabled or set
OMPLACE_AFFINITY_COMPAT to ON

•

The omplace script is part of SGI's MPT, and is located under the
/nasa/sgi/mpt/mpt_version_number/bin directory

•

Syntax

For OpenMP:
setenv OMP_NUM_THREADS nthreads
omplace [OPTIONS] program args...
or
omplace -nt nthreads [OPTIONS] program args...

For MPI:
mpiexec -np nranks omplace [OPTIONS] program args...

For MPI/OpenMP hybrid:
setenv OMP_NUM_THREADS nthreads
mpiexec -np nranks omplace [OPTIONS] program args...
or
mpiexec -np nranks omplace -nt nthreads [OPTIONS] program args...

Some useful omplace options are listed below:

-b basecpu
Specifies the starting CPU number for the effective CPU list.

-c cpulist

Using SGI omplace for Pinning 1

Specifies the effective CPU list. This is a comma-separated list of CPUs or CPU
ranges.

WARNING: For omplace, a blank space is required between -c and cpulist.
Without the space, the job will fail. This is different from dplace.

-nt nthreads
Specifies the number of threads per MPI process. If this option is unspecified, it
defaults to the value set for the OMP_NUM_THREADS environment variable. If
OMP_NUM_THREADS is not set, then nthreads defaults to 1.

-v
Verbose option. Portions of the automatically generated placement file will be
displayed.

-vv
Very verbose option. The automatically generated placement file will be displayed in
its entirety.

For information about additional options, see man omplace.

Examples

For Pure OpenMP Codes Using the Intel OpenMP Library

Sample PBS script:

#PBS -lselect=1:ncpus=12:model=wes

module load comp-intel/11.1.072
setenv KMP_AFFINITY disabled

omplace -c 0,3,6,9 -vv ./a.out

Sample placement information for this script is given in the application's stout file:

omplace: placement file /tmp/omplace.file.21891
 firsttask cpu=0
 thread oncpu=0 cpu=3-9:3 noplace=1 exact

The above placement output may not be easy to understand. A better way to check the
placement is to run the ps command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out
Sample output of placement.out

PSR COMMAND TIME PID PPID LWP
 0 openmp1 00:00:02 31918 31855 31918
 19 openmp1 00:00:00 31918 31855 31919

Category: Process Pinning 2

 3 openmp1 00:00:02 31918 31855 31920
 6 openmp1 00:00:02 31918 31855 31921
 9 openmp1 00:00:02 31918 31855 31922

Note that Intel OpenMP jobs use an extra thread that is unknown to the user, and does not
need to be placed. In the above example, this extra thread is running on logical core
number 19.

For Pure MPI Codes Using SGI MPT

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#Setting MPI_DSM_VERBOSE allows the placement information
#to be printed to the PBS stderr file

setenv MPI_DSM_VERBOSE

mpiexec -np 8 omplace -c 0,3,6,9 ./a.out

Sample placement information for this script is shown in the PBS stderr file:

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r144i3n12 0
 1 1 yes r144i3n12 3
 2 2 yes r144i3n12 6
 3 3 yes r144i3n12 9
 4 0 yes r145i2n3 0
 5 1 yes r145i2n3 3
 6 2 yes r145i2n3 6
 7 3 yes r145i2n3 9

In this example, the four processes on each node are evenly distributed to the two sockets
(CPUs 0 and 3 are on the first socket while CPUs 6 and 9 on the second socket) to
minimize contention. If omplace had not been used, then placement would follow the rules
of the environment variable OMP_DSM_DISTRIBUTE, and all four processes would have
been placed on the first socket -- likely leading to more contention.

For MPI/OpenMP Hybrid Codes Using SGI MPT and Intel OpenMP

Proper placement is more critical for MPI/OpenMP hybrid codes than for pure MPI or pure
OpenMP codes. The following example demonstrates the situation when no placement

Category: Process Pinning 3

instruction is provided and the OpenMP threads for each MPI process are stepping on one
another which likely would lead to very bad performance.

Sample PBS script without pinning:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789
setenv OMP_NUM_THREADS 2

mpiexec -np 8 ./a.out

There are two problems with the resulting placement shown in the example above. First,
you can see that the first four MPI processes on each node are placed on four cores
(0,1,2,3) of the same socket, which will likely lead to more contention compared to when
they are distributed between the two sockets.

MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 1
 2 2 yes r212i0n10 2
 3 3 yes r212i0n10 3
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 1
 6 2 yes r212i0n11 2
 7 3 yes r212i0n11 3

The second problem is that, as demonstrated with the ps command below, the OpenMP
threads are also placed on the same core where the associated MPI process is running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:02 4098 4092 4098
 0 a.out 00:00:02 4098 4092 4108
 0 a.out 00:00:02 4098 4092 4110
 1 a.out 00:00:03 4099 4092 4099
 1 a.out 00:00:03 4099 4092 4106
 2 a.out 00:00:03 4100 4092 4100
 2 a.out 00:00:03 4100 4092 4109
 3 a.out 00:00:03 4101 4092 4101
 3 a.out 00:00:03 4101 4092 4107

Sample PBS script demonstrating proper placement:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load mpi-sgi/mpt.2.04.10789
module load comp-intel/11.1.072

setenv MPI_DSM_VERBOSE

Category: Process Pinning 4

setenv OMP_NUM_THREADS 2
setenv KMP_AFFINITY disabled

cd $PBS_O_WORKDIR

#the following two lines will result in identical placement

mpiexec -np 8 omplace -nt 2 -c 0,1,3,4,6,7,9,10 -vv ./a.out
#mpiexec -np 8 omplace -nt 2 -c 0-10:bs=2+st=3 -vv ./a.out

Shown in the PBS stderr file, the 4 MPI processes on each node are properly distributed
on the two sockets with processes 0 and 1 on CPUs 0 and 3 (first socket) and processes 2
and 3 on CPUs 6 and 9 (second socket).

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 3
 2 2 yes r212i0n10 6
 3 3 yes r212i0n10 9
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 3
 6 2 yes r212i0n11 6
 7 3 yes r212i0n11 9

In the PBS stout file, it shows the placement of the two OpenMP threads for each MPI
process:

omplace: This is an SGI MPI program.
omplace: placement file /tmp/omplace.file.6454
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact
omplace: This is an SGI MPI program.
omplace: placement file /tmp/omplace.file.22771
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact

To get a better picture of how the OpenMP threads are placed, using the following ps
command:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:06 4436 4435 4436
 1 a.out 00:00:03 4436 4435 4447
 1 a.out 00:00:03 4436 4435 4448
 3 a.out 00:00:06 4437 4435 4437

Category: Process Pinning 5

 4 a.out 00:00:05 4437 4435 4446
 6 a.out 00:00:06 4438 4435 4438
 7 a.out 00:00:05 4438 4435 4444
 9 a.out 00:00:06 4439 4435 4439
 10 a.out 00:00:05 4439 4435 4445

Article ID: 287
Last updated: 08 Aug, 2012
Computing at NAS -> Best Practices -> Process Pinning -> Using SGI omplace for Pinning
http://www.nas.nasa.gov/hecc/support/kb/entry/287/?ajax=1

Category: Process Pinning 6

http://www.nas.nasa.gov/hecc/support/kb/entry/287/?ajax=1

	287.html

